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Penha 2190, Santa Luiza, Vitória-ES, 29045-402, Brazil
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Abstract

We describe the Seiberg–Witten map taking the 4D noncommutative BF
theory (NCBF) into its pure commutative version. The existence of this
map is in agreement with the hypothesis that such maps are available for any
noncommutative theory with Schwarz-type topological sectors, and represents
a strong indication for the renormalizability of these theories in general.

PACS number: 11.10.Nx

1. Introduction

Distinct gauge choices in the open strings lead to the realization of both ordinary Yang–Mills
field theories as well as noncommutative field theories. It was the perception of this fact that
made Seiberg and Witten propose the so-called Seiberg–Witten map (SW map) [1]. This
mapping establishes an expression of noncommutative field variables in terms of ordinary
(commutative) fields, in such a way that the noncommutative gauge transformed fields are
mapped into commutative fields gauge transformed in the ordinary sense.

Let us briefly review this idea. First, we introduce the Moyal product between two
functions defined on the noncommutative space [2],

f ∗ g = exp

(
i

2
θ ij ∂

∂xi

∂

∂yj

)
f (x)g(y)y→x

= fg +
i

2
θ ij ∂if ∂jg + O(θ2), (1)
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where the real c-number parameter θij is originated in the noncommutativity of spacetime
coordinates

[
∧
xi,

∧
xj ] = iθij . (2)

The vanishing of θ turns the noncommutative theory into the commutative one. Then, after
defining the Moyal bracket,

[f ∗, g] = f ∗ g − g ∗ f, (3)

the noncommutative gauge transformation is constructed as

∧
δ∧

λ

∧
A = ∂i

∧
λ + i[

∧
λ∗,

∧
Ai] = ∧

Di

∧
λ . (4)

Here the hat symbol identifies fields and operators defined on the noncommutative spacetime

while
∧
Di represents the Moyal covariant derivative. At this point it should be observed that,

although similar in form to a non-Abelian gauge transformation, there is a nonvanishing
contribution coming from the Moyal bracket in (4) even for an Abelian gauge field. In the
same way, the noncommutative gauge curvature

∧
F ij = ∂i

∧
Aj − ∂j

∧
Ai − i[

∧
Ai

∗,
∧

Aj ] (5)

presents a nonvanishing commutator contribution even for an Abelian field.
In the Abelian case the above expressions, up to first order in θ , turn out to be

∧
δ∧

λ

∧
Ai = ∂i

∧
λ − θkl∂k

∧
λ∂l

∧
Ai + O(θ2), (6)

∧
F ij = ∂i

∧
Aj − ∂j

∧
Ai +θkl∂k

∧
Ai∂l

∧
Aj + O(θ2). (7)

Now, the sense of the SW map is that noncommutative gauge equivalent fields should be
mapped into ordinary gauge equivalent fields. A particular solution for this problem in the
U(1) case, again up to first order in θ , is given by [1]

∧
Ai(A) = Ai − θkl

(
Ak∂lAi − 1

2Ak∂iAl

)
+ O(θ2), (8)

∧
λ(λ,A) = λ + 1

2θkl(∂kλ)Al + O(θ2), (9)

and a cohomological characterization of the general solution was accomplished in [3]. As a
by-product of this study, a conjecture on the existence of SW maps taking noncommutative
theories in the presence of topological terms into renormalizable commutative field theories
was proposed. The case of 3D theories was analysed in detail. It was shown how a map
of the 3D noncommutative Maxwell theory in the presence of a noncommutative Chern–
Simons term (NCCSM) would lead to the usual commutative theory [3], whereas θ -dependent
nonrenormalizable interactions inevitably accompany the SW mapped noncommutative
Maxwell theory (NCM) theory in the absence of a topological sector [4].

In fact, the lack of renormalizability of noncommutative gauge theories already appeared
at the noncommutative space, when it was noted that infrared and ultraviolet divergencies
were deeply entangled [5, 6]. So it could not be a surprise at all to find that the SW mapping
of such theories led to commutative theories presenting those θ -dependent nonrenormalizable
couplings. Since then, some evolution has been made in this topic. Grosse and Wulkenhaar
proposed to couple oscillator-like terms to the original noncommutative theories in order to
avoid the IR/UV mixing [7]. Slavnov also proposed the coupling of a new term to render the
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gauge action renormalizable [8]. Recently, it was shown that this new term was effectively
a BF-like coupling in the noncommutative space, and that the renormalizability so achieved
should be expected due to the strength of the supersymmetry present in topological theories
[9]. This is in agreement with the idea that a SW map can always join noncommutative theories
with topological sectors together with the renormalizable commutative theories. But, about
this point, some evidences pointing towards different conclusions can be found in the literature.
Blasi and Maggiori argued for quantum instabilities in 2D NCBF theory and conjectured that
this would be a general feature of noncommutative theories in higher dimensions [10], although
in 3D they agreed that the ‘instabilities’ of noncommutative Chern–Simons (NCCS) would
be harmless as they were always restricted to the trivial BRST sector [11], thus supporting
again the hypothesis that the renormalizability is connected to the existence of a SW mapped
renormalizable commutative version of the original noncommutative theory, as it happens
with NCCS [12]. These theories, as NCCS, even having non-power-counting couplings in the
noncommutative space, would be renormalizable in a broader sense [13, 14].

So, it is an open question whether in 4D the NCBF theory is renormalizable and if
there is a SW map taking this theory into a renormalizable commutative one. In view of
the breakdown of the renormalizability of 4D noncommutative Yang–Mills (NCYM) theories
(and also remembering that commutative YM theory has already been consistently proposed
to be seen as a deformation of a topological BF theory [15]) answering these questions become
relevant to the fate of noncommutative 4D theories. Here we want to give a definitive answer to
the second question, showing the existence of the SW map for NCBF theory into commutative
pure BF theory without any nonrenormalizable coupling, in much the same way as it happens
in the 3D NCCS case [3, 12].

In the following section, we will show that the noncommutative space allows the existence
of new symmetries not reducible to commutative ones. These symmetries are necessary to
construct the SW map of the NCBF theory, and we give the example of this map in the
first order in θ . In section 3 we generalize the reasoning of the first order by means of a
BRST technique, proving the existence of the SW map of the NCBF theory to all orders. In
the conclusion, we show that this map takes the NCBF action into the pure commutative BF
action, without the presence of any nonrenormalizable couplings. This supports the conjecture
on the renormalizability of the SW mapped theories coming from noncommutative theories
with topological sectors in 4D.

2. The first-order SW map

Let us begin by writing the action for the NCBF theory

SB̂F = 1

4

∫
d4x εμν�σ

∧
Bμν ∗ ∧

F�σ. (10)

The map that we will search,
∧
A = ∧

A (A,B) and
∧
B = ∧

B (A,B), should now preserve the gauge
symmetry
∧
δ∧

λ

∧
Aμ(A,B) = δλ(

∧
Aμ(A,B)),

∧
δ∧

λ

∧
Bμν(A,B) = δλ(

∧
Bμν(A,B)), (11)

as well as the topological symmetry typical of BF theories
∧
δ ∧

ψ

∧
Aμ(A,B) = δψ(

∧
Aμ (A,B)),

∧
δ ∧

ψ

∧
Bμν (A,B) = δψ(

∧
Bμν (A,B)), (12)

for both fields simultaneously, where, in the Abelian case,
∧
δ∧

λ

∧
Aμ = ∧

Dμ

∧
λ ,

∧
δ∧

λ

∧
Bμν = i[

∧
λ∗,

∧
Bμν], (13)

3
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δλAμ = ∂μλ, δλBμν = 0, (14)

and

∧
δ ∧

ψ

∧
Aμ= 0,

∧
δ ∧

ψ

∧
Bμν = ∧

Dμ

∧
ψν − ∧

Dν

∧
ψμ, (15)

∧
Dμ

∧
ψν = ∂μ

∧
ψν + i[

∧
ψν

∗,
∧
Aμ]. (16)

δψAμ = 0, δψBμν = ∂μψν − ∂νψμ. (17)

The problem that emerges when we try to construct the Seiberg–Witten map of the
noncommutative BF model is the impossibility of the simultaneous implementation of the

conditions shown in (11) and (12). The solution of the SW condition for the
∧
Aμ field is

actually straightforward since
∧
δ ∧

ψ

∧
Aμ = 0. The SW mapping for this sector reduces to the

SW problem of purely vectorial field theories. The cohomological treatment for this specific
case was presented by us in [3]. Then, the main difficulty is in the search for solutions of

the
∧
Bμν field mapping, and, of course, this difficulty is related to the topological symmetry.

(Indeed a treatment that does not take into account the topological symmetry was presented

in [16]. There, the addition to (10) of a quadratic term of the type
∧
Bμν

∧
B

μν explicitly broke
the topological symmetry, turning it possible the implementation of the usual SW mapping.)

So, we start our search by noting that condition (12), although natural, is not the most
general one. The presence of a noncommutative structure allows an infinite set of new

symmetries that can be used to extend the
∧
δ ∧

ψ

∧
B symmetry and then deform (12). The extended

symmetry remains an invariance of the noncommutative action (10).
For example, in the first explicit order in θ , the following operation:

∧
δ∧

T

∧
Bμν = − 1

2θαβ{ ∧
Dα

∧
Fμν

∗,
∧
β} + 1

4θαβ({ ∧
Dβ

∧
 [ν

∗,
∧
Fμ]α} − { ∧

D[ν
∧
β

∗,
∧
Fμ]α}), ∧

δ∧
T

∧
Aμ= 0,

(18)

generates a symmetry of (10),
∧
δ∧

T
SB̂F = 0. (19)

It is important to remark that this new symmetry (18) was picked up among the set of possible

symmetries with one θ because it has a parameter
∧
 which fits the same dimensionality of

the parameter
∧
ψ of the topological symmetry (15). There are other BRST equivalent ways of

writing the symmetry in (18) with the parameter
∧
, as we will see after equation (41). In this

sense, the choice of (18) is unique. There are also other possible symmetries of (10), but with
parameters of different dimensions which are not suitable for our problem. As it will be seen,
(18) is the ‘viable’ deformation of (12) that we were looking for. Then, by identifying both
parameters, we propose that, at least in first order in θ , the SW condition should relate this
extended noncommutative topological symmetry
∧
δ ∧



∧
Bμν = ∧

δ ∧
ψ

∧
Bμν +

∧
δ∧

T

∧
Bμν

= ∧
D[μ

∧
ν] − 1

2θαβ{ ∧
Dα

∧
Fμν

∗,
∧
β} + 1

4θαβ({ ∧
Dβ

∧
 [ν

∗,
∧
Fμ]α} − { ∧

D[ν
∧
β

∗,
∧
Fμ]α}) (20)

and the standard commutative topological symmetry of (17), i.e.,
∧
δ ∧



∧
Bμν(A,B) = δψ(

∧
Bμν(A,B)). (21)

4
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Now, this condition has a solution at first order in θ that can be presented as

∧
B

1

μν = −θαβAα∂βBμν − 1
2θαβF[μαBβν] (22)

∧


1

μ = −θαβAα∂βψμ + θαβFαμψβ (23)

But it is not difficult to see that, at second order in θ , the new condition (21) has again
an obstruction. Using the same reasoning, one can search for another symmetry of the B̂F

theory with a parameter with the same dimensions as
∧
ψ , now at the (explicit) second order in

θ ; then one can extend the symmetry (20) once more, and finally construct a new condition
substituting (21), which will be solvable at second order. This can be achieved, but it is not
surprising at all to understand that in the end the obstruction in the solution of the SW map for
the topological symmetry will move to the next order and so on.

In this scenario, the sensible question is if it is possible to assure the existence of an
extended noncommutative topological symmetry at all orders, from which one could extract the
definite SW map of the noncommutative B̂F theory, and then find its form in the commutative
space.

In the following we will prove the existence of such map.

3. The existence of the SW map at all orders

The starting point is the BRST transformations of the noncommutative fields and ghosts.
Analogously to the non-Abelian commutative BF case, that is fully discussed in [17, 18], they
are given by

∧
s

∧
Aμ = ∧

Dμ

∧
c,

∧
s

∧
c = i

∧
c ∗ ∧

c,

∧
s

∧
Bμν = ∧

D[μ

∧
ψν] + i[

∧
c∗,

∧
Bμν],

∧
s

∧
ψμ = ∧

Dμ

∧
ρ + i[

∧
c∗,

∧
ψμ],

∧
s

∧
ρ = i[

∧
c∗,

∧
ρ].

(24)

Let us mention that the ghost ρ̂ is necessary due to the zero modes in the transformation

of
∧
ψμ.

In this BRST context, the SW map is the solution of the condition relating the
noncommutative BRST transformations and those of the commutative theory. For example,

the conditions for
∧
Aμ and

∧
c,

∧
s

∧
Aμ(A) = s(

∧
Aμ(A)), (25)

∧
s

∧
c(A, c) = s(

∧
c(A, c)), (26)

have the same structure of the pure noncommutative Maxwell case. Then, we can expect the
same solution as we anticipated in (8) and (9). As we are searching for an argument valid
for all orders, let us derive the relations expressing the full dependence of the mapped fields

5
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on θ . The commutative operator s obviously does not depend on θ , and we can establish the
commutation between s and the operator of the variation under θ , δθ ,

[s, δθ ] = 0. (27)

Now, from this relation, the SW conditions (25), (26), and the BRST transformations (24), we

see that the SW mapped fields
∧
c and

∧
Aμ should satisfy

∧
s(δθ

∧
c) = i{δθ

∧
c∗,

∧
c} − 1

4δθαβ[∂α

∧
c∗, ∂β

∧
c], (28)

∧
s(δθ

∧
Aμ) = ∧

Dμ(δθ

∧
c) + i[δθ

∧
c∗,

∧
Aμ] + i[

∧
c∗, δθ

∧
Aμ] − 1

2δθαβ[∂α

∧
c∗, ∂β

∧
Aμ]. (29)

A particular solution to this system is given by

δθ

∧
c = 1

4δθαβ{∂α

∧
c∗,

∧
Aβ}, (30)

δθ

∧
Aμ = − 1

4δθαβ{∧
Aμ

∗, ∂β

∧
Aμ +

∧
Fβμ}. (31)

These solutions were written for the first time in [1], although they were derived there far from
the BRST environment. As stressed above, here they just represent particular solutions to the

system (28), (29). In fact, once the nilpotency of the BRST operator
∧
s is assured, the complete

solution of the problem requires a characterization of the cohomological classes of
∧
s with the

convenient quantum numbers. A general analysis (which is not of our concern here) should
follow the lines of the work in [3]. For the moment, we would like to call attention to the fact

that solutions (30) and (31) are defined modulo covariant elements under
∧
s, i.e., objects that

transform as
∧
s

∧
X = i[

∧
c∗,

∧
X]. (32)

Note also that equations (8) and (9) can be seen as first-order solutions of (30) and (31). It
is worthwhile to reinforce that the obtention of the differential equations (30) and (31) is
sufficient to assure the existence of the SW map order by order in θ , as explained in [1].

This procedure can now be followed for the other fields and ghosts of the B̂F theory

appearing in (24). The solutions for the θ variations of the ghosts
∧
ρ and

∧
ψμ are obtained in

an analogous and straightforward way and are given by

δθ

∧
ρ = − 1

4δθαβ{∧
Aα

∗, (∂β +
∧
Dβ)

∧
ρ}, (33)

δθ

∧
ψμ = − 1

4δθαβ{∧
Aα

∗,(∂β +
∧
Dβ)

∧
ψμ} + 1

2δθαβ{ ∧
Fαμ

∗,
∧
ψβ}. (34)

Here we must call attention once more for the importance of obtaining relations (30),
(31), (33) and (34). First of all, we stress that these are exact expressions for the differentials

δθ

∧
Aμ, δθ

∧
c, δθ

∧
ρ and δθ

∧
ψμ valid to all orders in the θ expansion. From them, we can derive the

SW map order by order in θ , by reintroducing the lowest order solutions in the equations and
then solving for the next higher order. This procedure is a systematic method for the study of
the existence of the SW map for a general set of transformations, allowing then the obtention
of the explicit SW maps of the fields to any order in θμν . In other words, if we are able to
show such differentials for all the fields on the noncommutative theory, then the existence of
the SW map for the whole theory is assured. So, we must find the same differential for the

last remaining field,
∧
Bμν .

6



J. Phys. A: Math. Theor. 41 (2008) 425203 L C Q Vilar et al

Nevertheless the situation of the
∧
Bμν field is more involved, and we will analyse it in

detail. The problem that we will describe is in fact the root of all the difficulties that we have
been meeting since the beginning of our work. As we just mentioned, the nilpotency of the

BRST operator
∧
s is the fundamental pillar of all this construction. This can be understood by

remembering that the SW condition on
∧
Bμν leads to

∧
s

2 ∧
Bμν(A,B) = s2(

∧
Bμν(A,B)), (35)

and as the BRST operator s is nilpotent on all fields of the Abelian BF theory, the existence of

the SW map becomes conditioned to the nilpotency of
∧
s as well. But the resemblance of the

BRST transformations (24) on the set of transformations of the commutative non-Abelian BF
case brings in a well-known problem of the later: the lack of nilpotency of the BRST operator
for the non-Abelian BF system. This only comes into play now because it happens precisely

on the
∧
Bμν field,

∧
s

2 ∧
Bμν = −i[

∧
Fμν

∗,
∧
ρ]. (36)

In the quantum treatment of the commutative non-Abelian case this is overcome using the
Batalin–Vilkovisky procedure by introducing a term of higher order in the anti-fields in the
fully quantized action [18, 19]. Or, in the BRST language, noting that we are dealing with a
topological field theory, we have at our disposal a complete ladder structure [20] which makes

it immediate the correction of the BRST transformation of
∧
Bμν in order to build a nilpotent

Slavnov operator [18]. In our case we have an alternative allowed by the presence of the
noncommutative θ parameter. Let us deform the transformation of the B̂μν field in (24) as
follows:

∧
s

∧
Bμν = ∧

D[μ

∧
ψν] + i[

∧
c∗,

∧
Bμν] +

∧
δt

∧
Bμν, (37)

in such a way that the nilpotency of
∧
s can be recovered,

∧
s

2 ∧
Bμν = −i[

∧
Fμν

∗,
∧
ρ] +

∧
s(

∧
δt

∧
Bμν) − i[

∧
c∗,

∧
δt

∧
Bμν] = 0. (38)

At this point, we can see that we are generalizing the procedure that was taken in the
introduction of this work when we were dealing with the θ first-order case (equation (37)
is the all orders generalization of (20)).

A brief comment is important here. In the BV language, in the presence of the anti-
fields, the idea of deforming the set of field transformations of a given theory together with
the deformation of its action is well known in the literature [21]. In fact, equation (38) when
translated to the BV language, would appear as the correction demanded by the master equation

(it would come from the term joining the transformation of the ghost
∧
ψμ an of its anti-fields).

This correction would just be the introduction of the quadratic term in the anti-field of
∧
Bμν in

the BV action, as it happens in the commutative case that we have. But as we are seeking for

a SW map transforming the fields of the noncommutative
∧

BF theory into those of the usual
commutative theory, we avoid the introduction of the BV anti-fields. This is only possible due
to the existence of the noncommutative parameter θμν , which allows us to restrain ourselves
to the set of the fields of the theory without the presence of the anti-fields. Then we find this
present approach a more direct attack to the SW map problem.

The solution of (38) is thus the key ingredient to assert the existence of the SW mapping,
implying that

∧
s(

∧
δt

∧
Bμν) = i[

∧
Fμν

∗,
∧
ρ] + i[

∧
c∗,

∧
δt

∧
Bμν]. (39)

7
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We can now act with δθ on this equation,

∧
s(δθ

∧
δt

∧
Bμν) = i[δθ

∧
Fμν

∗,
∧
ρ] − 1

2δθαβ{∂α

∧
Fμν

∗, ∂β

∧
ρ} + i[

∧
Fμν

∗, δθ

∧
ρ]

+ i[δθ

∧
c∗,

∧
δt

∧
Bμν] − 1

2δθαβ{∂α

∧
c∗, ∂β(

∧
δt

∧
Bμν)} + i[

∧
c∗, δθ

∧
δt

∧
Bμν], (40)

use (30), (31), (33), and, then, find

δθ

∧
δt

∧
Bμν = − 1

4δθαβ{∧
Aα

∗, (∂β +
∧
Dβ)

∧
δt

∧
Bμν} − 1

2δθαβ{ ∧
Dα

∧
Fμν

∗,
∧
ψβ}

− 1
2δθαβ{ ∧

F [μα
∗,
∧
δt

∧
Bβν]} + δθαβ

∧
Xμναβ, (41)

where
∧
Xμναβ represents the freedom in the solution of this kind of problem by covariant terms,

as we saw in (32),

∧
s

∧
Xμναβ = i[

∧
c∗,

∧
Xμναβ]. (42)

But there are still some restrictions on solution (41). When we considered the deformation

of the transformation of
∧
Bμν in (37), we obviously intended that it would still represent a

symmetry of the action. This implies that (taking
∧
δt

∧
Aμ = 0)

∧
δtSB̂F =

∫
d4x

1

4
εμν�σ

∧
Fμν

∧
δt

∧
B�σ= 0 (43)

and

δθ

∧
δt SB̂F =

∫
d4x

1

4
εμν�σ (δθ

∧
Fμν

∧
δt

∧
B�σ +

∧
Fμν δθ

∧
δt

∧
B�σ ) = 0. (44)

Substituting (41) into (44) we get∫
d4x εμνρσ δθαβ

(
1

2
{ ∧
Fμν

∗,
∧
Fαρ}

∧
δt

∧
Bβσ − 1

2

∧
Fμν{

∧
Dα

∧
Fρσ

∗,
∧
ψβ} +

∧
Fρσ

∧
Xμναβ

)
= 0 (45)

which can be rewritten as∫
d4x εμνρσ δθαβ

∧
Fρσ

( ∧
Xμναβ +

1

2
{ ∧
Fαμ

∗,
∧
δt

∧
Bβν} − 1

2
{ ∧
Dα

∧
Fμν

∗,
∧
ψβ}

)
= 0. (46)

Before the final identification, we have to take care to guarantee the covariance of
∧
Xμναβ .

Remembering the transformation of
∧
δt

∧
Bμν in (39), it is not difficult to change the form of the

last term in (46), integrating by parts and using a Fierz identity, to arrive at

δθαβ
∧
Xμναβ = 1

4δθαβ{ ∧
F [μα

∗,
∧
δt

∧
Bβν]} + 1

4δθαβ{ ∧
F [μα

∗,
∧
Dβ

∧
ψν] − ∧

Dν]

∧
ψβ}. (47)

(It must be emphasized that the solution of (47) is still a particular solution of (46). It is always
possible to introduce covariant terms satisfying∫

εμνρσ δθαβ
∧
Fμν

∧
X

′
ρσαβ = 0 (48)

with a covariant
∧
X

′
ρσαβ . We will not explore this freedom.)

At this point, we can see that the extended symmetry (18) that we have found at the first
explicit order in θ , necessary for the construction of the SW map, is just the first-order integral
of (41) with (47).
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Finally, we can search for δθ

∧
Bμν . Applying δθ on (37),

δθ

∧
s

∧
Bμν = ∧

D[μ δθ

∧
ψν] − i[δθ

∧
A[μ

∗,
∧
ψν]] + 1

2δθαβ{∂α

∧
A[μ

∗, ∂β

∧
ψν]} + i[δθ

∧
c∗,

∧
Bμν]

− 1
2δθαβ{∂α

∧
c∗, ∂β

∧
Bμν} + i[

∧
c∗, δθ

∧
Bμν] + δθ

∧
δt

∧
Bμν, (49)

and then using (30), (31), (34), (41) and (47), we can solve for δθ

∧
Bμν ,

δθ

∧
Bμν= − 1

4δθαβ{∧
Aα

∗,(∂β +
∧
Dβ)

∧
Bμν} − 1

4δθαβ{ ∧
F [μα

∗,
∧
Bβν]}. (50)

We now observe that (22) is the first-order solution of (50), as expected. Then if we substitute
the first-order solutions (8) and (22) into (50), we obtain a second-order differential equation

in θ , which can be integrated to achieve the second-order expansion of the map
∧
Bμν (θ,A,B).

This can then be iterated order by order. The same reasoning applies to all the other differential
equations (30), (31), (33) and (34) for all the fields of the theory. So, this method allows us
to solve the problem of the SW map for the noncommutative B̂F theory order by order in θ .
Relation (50) is the last one missing to complete the dependence of the fields of the B̂F theory
on θ .

4. Conclusion

Let us summarize the method up to now. We started from the known BRST transformations
of the fields of the NCBF theory in (24). Then, from the SW conditions for these fields, and
using the commutation between the commutative BRST operator and the differential operator
on the noncommutative parameter (27), we were able to establish the differential equations

which determines the dependence of the SW map of the noncommutative fields
∧
Aμ,

∧
c,

∧
ρ,

∧
ψμ

on θ and on the commutative fields, respectively, equations (30), (31), (33) and (34). Now the
explicit form of each map can be obtained by solving these equations order by order in θ (e.g.,
a first-order solution is just what is obtained by changing δθ by θ and the noncommutative
fields by the commutative ones in the right-hand side of (30), (31), (33) and (34)).

The differential equation for the θ dependence of the SW map for
∧
Bμν is harder to

achieve. The origin of this difficulty can be traced back to the lack of the nilpotency of the

noncommutative BRST operator on
∧
Bμν , equation (36). To overlap it, and being inspired by

our study of the first-order SW map of
∧
Bμν done in section 2, we admit a possible extension of

the BRST transformation of this field on the noncommutative space, equation (37). Now we
are able to proceed with our method, by first determining the differential dependence of this
BRST extension on θ , equations (41) and (47), and finally obtaining the differential equation

for the θ dependence of the SW map for the
∧
Bμν field itself, equation (50). This solves the

question for the existence of the SW map for all the fields of the NCBF theory.
Then, to finish our work, we can now answer the question of what is the behaviour of the

action (10) under such map. Its dependence on θ can be obtained by applying δθ on (10), and
after using (31) and (50), we find

δθSB̂F = 1

8

∫
d4x εμνρσ δθαβ({ ∧

Fαμ
∗,

∧
Fβν}

∧
Bρσ − 1

2
{ ∧
Fαβ

∗,
∧
Fμν}

∧
Bρσ +

∧
Fμν{

∧
Fαρ

∗,
∧
Bβσ }). (51)

By means of a Fierz identity, we can show that the expression on the right-hand side of (51)
is null,

δθSB̂F = 0. (52)
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The final conclusion is that, with the particular Seiberg–Witten transformation determined
by (31) and (50), the noncommutative B̂F action is mapped into its pure commutative
version without any nonrenormalizable corrections in θ . The ambiguities in the SW map
can generate covariant deformations in θ in the commutative space. But as such deformations
only intervene in the interaction sector of the theory, without changing the propagation sector,
the topological variables of the BF theory (linking numbers) will remain independent of
θ without feeling the presence of these deformations. This is in complete analogy with
the case of the noncommutative Chern–Simmons model in 3D [12]. We believe that this
renormalizability is a general feature of the commutative theories obtained through the SW
map of noncommutative actions with Schwarz-type topological sectors.
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